Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
Inflammopharmacology ; 31(4): 1779-1788, 2023 Aug.
Article in English | MEDLINE | ID: covidwho-2325971

ABSTRACT

The severe acute respiratory syndrome coronavirus (SARS-CoV)-2 responsible for the global COVID-19 pandemic has caused almost 760 million confirmed cases and 7 million deaths worldwide, as of end-February 2023. Since the beginning of the first COVID-19 case, several virus variants have emerged: Alpha (B1.1.7), Beta (B135.1), Gamma (P.1), Delta (B.1.617.2) and then Omicron (B.1.1.529) and its sublineages. All variants have diversified in transmissibility, virulence, and pathogenicity. All the newly emerging SARS-CoV-2 variants appear to contain some similar mutations associated with greater "evasiveness" of the virus to immune defences. From early 2022 onward, several Omicron subvariants named BA.1, BA.2, BA.3, BA.4, and BA.5, with comparable mutation forms, have followed. After the wave of contagions caused by Omicron BA.5, a new Indian variant named Centaurus BA.2.75 and its new subvariant BA.2.75.2, a second-generation evolution of the Omicron variant BA.2, have recently been identified. From early evidence, it appears that this new variant has higher affinity for the cell entry receptor ACE-2, making it potentially able to spread very fast. According to the latest studies, the BA.2.75.2 variant may be able to evade more antibodies in the bloodstream generated by vaccination or previous infection, and it may be more resistant to antiviral and monoclonal antibody drug treatments. In this manuscript, the authors highlight and describe the latest evidences and critical issues have emerged on the new SARS-CoV-2 variants.

2.
Euro Surveill ; 28(8)2023 02.
Article in English | MEDLINE | ID: covidwho-2258570

ABSTRACT

Effectiveness against severe COVID-19 of a second booster dose of the bivalent (original/BA.4-5) mRNA vaccine 7-90 days post-administration, relative to a first booster dose of an mRNA vaccine received ≥ 120 days earlier, was ca 60% both in persons ≥ 60 years never infected and in those infected > 6 months before. Relative effectiveness in those infected 4-6 months earlier indicated no significant additional protection (10%; 95% CI: -44 to 44). A second booster vaccination 6 months after the latest infection may be warranted.


Subject(s)
COVID-19 , Humans , COVID-19/prevention & control , Italy/epidemiology , RNA, Messenger , Vaccination
3.
J Clin Med ; 12(5)2023 Feb 28.
Article in English | MEDLINE | ID: covidwho-2282607

ABSTRACT

Candida auris is an emerging fungus that represents a serious health threat globally. In Italy, the first case was detected in July 2019. Then, one case was reported to the Ministry of Health (MoH) on January 2020. Nine months later, a huge number of cases were reported in northern Italy. Overall, 361 cases were detected in 17 healthcare facilities between July 2019 and December 2022 in the Liguria, Piedmont, Emilia-Romagna, and Veneto regions, including 146 (40.4%) deaths. The majority of cases (91.8%) were considered as colonised. Only one had a history of travel abroad. Microbiological data on seven isolates showed that all but one strain (85.7%) were resistant to fluconazole. All the environmental samples tested negative. Weekly screening of contacts was performed by the healthcare facilities. Infection prevention and control (IPC) measures were applied locally. The MoH nominated a National Reference Laboratory to characterise C. auris isolates and store the strains. In 2021, Italy posted two messages through the Epidemic Intelligence Information System (EPIS) to inform on the cases. On February 2022, a rapid risk assessment indicated a high risk for further spread within Italy, but a low risk of spread to other countries.

4.
Ann Ist Super Sanita ; 59(1): 26-30, 2023.
Article in English | MEDLINE | ID: covidwho-2281430

ABSTRACT

Among the objectives of the WHO Global Vaccination Action Plan 2020-2025, there is the establishment, in all countries, of a National Immunization Technical Advisory Group (NITAG), an independent body with the aim of supporting and harmonising vaccination policies. Italy firstly established a NITAG in 2017; it contributed to the nation's immunization policies but fell short of its goal of becoming a true reference group. The newly appointed NITAG, made up of 28 independent experts, has the ambitious goal to promote the new National Immunization Prevention Plan (PNPV), to harmonise the current vaccination schedule with the anti-COVID-19 campaign, and to recover the vaccination coverage decline that occurred during the pandemic. The contact with the ECDC EU/EEA, the WHO Global NITAG networks, and all the national stakeholders needs to be reinforced in order to accomplish these aims. This paper describes the structure, organisation, and strategy of the new Italian NITAG.


Subject(s)
Advisory Committees , COVID-19 , Immunization Programs , Mass Vaccination , Advisory Committees/history , Advisory Committees/organization & administration , Italy/epidemiology , Immunization Programs/ethics , Immunization Programs/organization & administration , Immunization Programs/standards , Immunization Programs/trends , COVID-19/epidemiology , History, 21st Century , Goals , Mass Vaccination/ethics , Mass Vaccination/organization & administration , Mass Vaccination/standards , Mass Vaccination/trends , Conflict of Interest , Humans
5.
Medical Sciences Forum ; 13(1):31.0, 2022.
Article in English | MDPI | ID: covidwho-2234282

ABSTRACT

During SARS-CoV-2 pandemic irregular migrants coming by sea to Europe were required to observe a period of isolation or quarantine on-board dedicated ferry vessels, converted into protected isolation system according to Technical Guidelines written by the Italian Ministry of Health. Migrants were accommodated according to their health conditions and swab tests results in different color zones. 20 'Ship Missions';were performed with an average operating time of 4.12 months in the sea. 60,086 migrants were hosted (positivity of 7.29%). This integrated management system showed some limitations but positively contributed to better manage irregular migration during the pandemic.

6.
Vaccine ; 2022 Nov 14.
Article in English | MEDLINE | ID: covidwho-2229846

ABSTRACT

Several countries started a 2nd booster COVID-19 vaccination campaign targeting the elderly population, but evidence around its effectiveness is still scarce. This study aims to estimate the relative effectiveness of a 2nd booster dose of COVID-19 mRNA vaccine in the population aged ≥ 80 years in Italy, during predominant circulation of the Omicron BA.2 and BA.5 subvariants. We linked routine data from the national vaccination registry and the COVID-19 surveillance system. On each day between 11 April and 6 August 2022, we matched 1:1, according to several demographic and clinical characteristics, individuals who received the 2nd booster vaccine dose with individuals who received the 1st booster vaccine dose at least 120 days earlier. We used the Kaplan-Meier method to compare the risks of SARS-CoV-2 infection and severe COVID-19 (hospitalisation or death) between the two groups, calculating the relative vaccine effectiveness (RVE) as (1 - risk ratio)X100. Based on the analysis of 831,555 matched pairs, we found that a 2nd booster dose of mRNA vaccine, 14-118 days post administration, was moderately effective in preventing SARS-CoV-2 infection compared to a 1st booster dose administered at least 120 days earlier [14.3 %, 95 % confidence interval (CI): 2.2-20.2]. RVE decreased from 28.5 % (95 % CI: 24.7-32.1) in the time-interval 14-28 days to 7.6 % (95 % CI: -14.1 to 18.3) in the time-interval 56-118 days. However, RVE against severe COVID-19 was higher (34.0 %, 95 % CI: 23.4-42.7), decreasing from 43.2 % (95 % CI: 30.6-54.9) to 27.2 % (95 % CI: 8.3-42.9) over the same time span. Although RVE against SARS-CoV-2 infection was much reduced 2-4 months after a 2nd booster dose, RVE against severe COVID-19 was about 30 %, even during prevalent circulation of the Omicron BA.5 subvariant. The cost-benefit of a 3rd booster dose for the elderly people who received the 2nd booster dose at least four months earlier should be carefully evaluated.

8.
Euro Surveill ; 27(45)2022 11.
Article in English | MEDLINE | ID: covidwho-2117835

ABSTRACT

BackgroundThe SARS-CoV-2 variant of concern Omicron was first detected in Italy in November 2021.AimTo comprehensively describe Omicron spread in Italy in the 2 subsequent months and its impact on the overall SARS-CoV-2 circulation at population level.MethodsWe analyse data from four genomic surveys conducted across the country between December 2021 and January 2022. Combining genomic sequencing results with epidemiological records collated by the National Integrated Surveillance System, the Omicron reproductive number and exponential growth rate are estimated, as well as SARS-CoV-2 transmissibility.ResultsOmicron became dominant in Italy less than 1 month after its first detection, representing on 3 January 76.9-80.2% of notified SARS-CoV-2 infections, with a doubling time of 2.7-3.3 days. As of 17 January 2022, Delta variant represented < 6% of cases. During the Omicron expansion in December 2021, the estimated mean net reproduction numbers respectively rose from 1.15 to a maximum of 1.83 for symptomatic cases and from 1.14 to 1.36 for hospitalised cases, while remaining relatively stable, between 0.93 and 1.21, for cases needing intensive care. Despite a reduction in relative proportion, Delta infections increased in absolute terms throughout December contributing to an increase in hospitalisations. A significant reproduction numbers' decline was found after mid-January, with average estimates dropping below 1 between 10 and 16 January 2022.ConclusionEstimates suggest a marked growth advantage of Omicron compared with Delta variant, but lower disease severity at population level possibly due to residual immunity against severe outcomes acquired from vaccination and prior infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , Vaccination , Base Sequence
9.
Expert Rev Vaccines ; 21(12): 1831-1841, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2070019

ABSTRACT

BACKGROUND: This meta-analysis aims to assess the effectiveness of the current Sars-Cov2 vaccine regimens against Omicron infection. A secondary endpoint aims to investigate the waning effectiveness of primary vaccination against symptomatic infection and related hospitalization. RESEARCH DESIGN AND METHODS: The systematic review started on 1 December 2021 and was concluded on 1 March 2022. Random-effects frequentist meta-analyses and multiple meta-regressions were performed. RESULTS: In total, 15 studies are included in the quantitative synthesis. According to the meta-analysis results, the overall risk of Sars-Cov2 infection in vaccinated individuals is on average 31 · 5% lower than the infection risk in unvaccinated while vaccinated with one booster dose have a 70 · 4% risk reduction of Omicron infection compared to unvaccinated. In particular, one booster dose significantly decreases by 69% the risk of symptomatic Omicron infection with respect to unvaccinated. Six months after the primary vaccination, the average risk reduction declines to 22% against symptomatic infection and to 55% against hospitalization. CONCLUSIONS: Primary vaccination does not provide sufficient protection against symptomatic Omicron infection. Although the effectiveness of the primary vaccination against hospitalization due to Omicron remains significantly above 50% after 3 months, it dramatically fades after 6 months.


Subject(s)
COVID-19 , Humans , COVID-19/prevention & control , RNA, Viral , SARS-CoV-2 , Vaccination , Hospitalization
10.
J Community Health ; 47(4): 598-603, 2022 08.
Article in English | MEDLINE | ID: covidwho-1942341

ABSTRACT

This study describes a SARS-CoV-2 outbreak caused by the Delta (B.1.617.2) variant in a nursing home in Central Italy during October-November 2021. Trained interviewers collected data from residents, staff, and administration officers with an agreed informed consent procedure. Thirty-two (44.5%) out of 72 residents (median age 89 years) and six (26.1%) of 23 healthcare workers were found to be infected with SARS-CoV-2. Infections occurred more often among residents with a higher index of independence in daily living activities, suggesting an increased risk for those with more interactions. Twenty-five infected residents (78.1%) received the booster dose of mRNA anti-COVID-19 vaccine > 7 days before SARS-CoV-2 onset. Half of the infected residents had mild symptoms, and only three required hospitalisation, one of whom died from COVID-19 complications. The study underlines the effectiveness of a booster dose in providing a high protection against severe disease and hospitalisation even among vulnerable individuals infected with the Delta variant of concern.


Subject(s)
COVID-19 Vaccines , COVID-19 , Aged, 80 and over , COVID-19/epidemiology , COVID-19/prevention & control , Disease Outbreaks/prevention & control , Humans , Nursing Homes , RNA, Messenger , SARS-CoV-2
11.
Vaccines (Basel) ; 10(7)2022 Jul 16.
Article in English | MEDLINE | ID: covidwho-1939055

ABSTRACT

OBJECTIVES: Italy was the first European country to introduce universal vaccination of adolescents, for both males and females, against Human Papilloma Virus (HPV) starting in 2017 with the NIP 2017-2019's release. However, vaccine coverage rates (VCRs) among adolescents have shown a precarious take-off since the NIP's release, and this situation worsened due to the impact of the COVID-19 pandemic in 2020. The aim of this work is to estimate the epidemiological and economic impact of drops in VCRs due to the pandemic on those generations that missed the vaccination appointment and to discuss alternative scenarios in light of the national data. METHODS: Through an analysis of the official ministerial HPV vaccination reports, a model was developed to estimate the number of 12-year-old males and females who were not vaccinated against HPV during the period 2017-2021. Based on previously published models that estimate the incidence and the economic impact of HPV-related diseases in Italy, a new model was developed to estimate the impact of the aggregated HPV VCRs achieved in Italy between 2017 and 2021. RESULTS: Overall, in 2021, 723,375 girls and 1,011,906 boys born between 2005 and 2009 were not vaccinated against HPV in Italy (42% and 52% of these cohorts, respectively). As compared with the 95% target provided by the Italian NIP, between 505,000 and 634,000 girls will not be protected against a large number of HPV-related diseases. For boys, the number of the unvaccinated population compared to the applicable target is over 615,000 in the 'best case scenario' and over 749,000 in the 'worst case scenario'. Overall, between 1.1 and 1.3 million young adolescents born between 2005 and 2009 will not be protected against HPV-related diseases over their lifetime with expected lifetime costs of non-vaccination that will be over EUR 905 million. If the 95% optimal VCRs were achieved, the model estimates a cost reduction equal to EUR 529 million, the net of the costs incurred to implement the vaccination program. CONCLUSION: Suboptimal vaccination coverage represents a missed opportunity, not only because of the increased burden of HPV-related diseases, but also in terms of economic loss. Thus, reaching national HPV immunization goals is a public health priority.

12.
Lancet ; 400(10346): 97-103, 2022 07 09.
Article in English | MEDLINE | ID: covidwho-1921470

ABSTRACT

BACKGROUND: By April 13, 2022, more than 4 months after the approval of BNT162b2 (Pfizer-BioNTech) for children, less than 40% of 5-11-year-olds in Italy had been vaccinated against COVID-19. Estimating how effective vaccination is in 5-11-year-olds in the current epidemiological context dominated by the omicron variant (B.1.1.529) is important to inform public health bodies in defining vaccination policies and strategies. METHODS: In this retrospective population analysis, we assessed vaccine effectiveness against SARS-CoV-2 infection and severe COVID-19, defined as an infection leading to hospitalisation or death, by linking the national COVID-19 surveillance system and the national vaccination registry. All Italian children aged 5-11 years without a previous diagnosis of infection were eligible for inclusion and were followed up from Jan 17 to April 13, 2022. All children with inconsistent vaccination data, diagnosed with SARS-CoV-2 infection before the start date of the study or without information on the municipality of residence were excluded from the analysis. With unvaccinated children as the reference group, we estimated vaccine effectiveness in those who were partly vaccinated (one dose) and those who were fully vaccinated (two doses). FINDINGS: By April 13, 2022, 1 063 035 (35·8%) of the 2 965 918 children aged 5-11 years included in the study had received two doses of the vaccine, 134 386 (4·5%) children had received one dose only, and 1 768 497 (59·6%) were unvaccinated. During the study period, 766 756 cases of SARS-CoV-2 infection and 644 cases of severe COVID-19 (627 hospitalisations, 15 admissions to intensive care units, and two deaths) were notified. Overall, vaccine effectiveness in the fully vaccinated group was 29·4% (95% CI 28·5-30·2) against SARS-CoV-2 infection and 41·1% (22·2-55·4) against severe COVID-19, whereas vaccine effectiveness in the partly vaccinated group was 27·4% (26·4-28·4) against SARS-CoV-2 infection and 38·1% (20·9-51·5) against severe COVID-19. Vaccine effectiveness against infection peaked at 38·7% (37·7-39·7) at 0-14 days after full vaccination and decreased to 21·2% (19·7-22·7) at 43-84 days after full vaccination. INTERPRETATION: Vaccination against COVID-19 in children aged 5-11 years in Italy showed a lower effectiveness in preventing SARS-CoV-2 infection and severe COVID-19 than in individuals aged 12 years and older. Effectiveness against infection appears to decrease after completion of the current primary vaccination cycle. FUNDING: None. TRANSLATION: For the Italian translation of the summary see Supplementary Materials section.


Subject(s)
COVID-19 , Viral Vaccines , BNT162 Vaccine , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Child , Humans , Retrospective Studies , SARS-CoV-2
13.
Ann Ist Super Sanita ; 58(1): 1-5, 2022.
Article in English | MEDLINE | ID: covidwho-1897024

ABSTRACT

INTRODUCTION: Multiple variants of SARS-CoV-2, since the end of 2020 have emerged in many geographical areas and are currently under surveillance worldwide highlighting the continuing need for genomic monitoring to detect variants previously not yet identified. METHODS: In this study, we used whole-genome sequencing (WGS) and phylogenetic analysis to investigate A.27 lineage SARS-CoV-2 from Sardinia, Italy. RESULTS: The Italian A.27 lineage genomes from Sardinia appeared related in a clade with genomes from France. Among the key mutations identified in the spike protein, the N501Y and the L452R deserve attention as considered likely vaccine escape mutations. Additional mutations were also here reported. CONCLUSION: A combination of features could explain our data such as SARS-CoV-2 genetic variability, viral dynamics, the human genetic diversity of Sardinian populations, the island context probably subjected to different selective pressures. Molecular and genomic investigation is essential to promptly identify variants with specific mutations with potential impact on public health and vaccine formulation.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Genome, Viral , Humans , Mutation , Phylogeny , SARS-CoV-2/genetics
14.
Vaccines (Basel) ; 10(6)2022 Jun 06.
Article in English | MEDLINE | ID: covidwho-1884433

ABSTRACT

About one year after the identification of the first cases of pneumonia due to a novel coronavirus in Wuhan, several vaccines against SARS-CoV-2/COVID-19 started to be approved for emergency use or authorized for early or limited use. The rapid development of effective vaccines based on different technological platforms represents an unprecedented success for vaccinology, providing a unique opportunity for a successful public health intervention. However, it is widely known that only a limited number of vaccine doses are usually available at the beginning of vaccination campaigns against an emerging virus; in this phase, protecting health care workers and reducing mortality rates is the priority. When a larger number of vaccines become available, the identification of the drivers of virus circulation coupled with the use of transmission blocking vaccines are key to achieve epidemic control through population immunity. However, as we learned during the vaccination campaigns against the pandemic coronavirus, several factors may hamper this process. Thus, flexible plans are required to obtain the best sustainable result with available tools, modulating vaccination strategies in accordance with improved scientific knowledge, and taking into account the duration of protective immune response, virus evolution, and changing epidemic dynamics.

15.
Vaccines (Basel) ; 10(4)2022 Apr 13.
Article in English | MEDLINE | ID: covidwho-1786113

ABSTRACT

Currently available vaccines against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) are highly effective but not able to keep the coronavirus disease 2019 (COVID-19) pandemic completely under control. Alternative R&D strategies are required to induce a long-lasting immunological response and to reduce adverse events as well as to favor rapid development and large-scale production. Several technological platforms have been used to develop COVID-19 vaccines, including inactivated viruses, recombinant proteins, DNA- and RNA-based vaccines, virus-vectored vaccines, and virus-like particles. In general, mRNA vaccines, protein-based vaccines, and vectored vaccines have shown a high level of protection against COVID-19. However, the mutation-prone nature of the spike (S) protein affects long-lasting vaccine protection and its effectiveness, and vaccinated people can become infected with new variants, also showing high virus levels. In addition, adverse effects may occur, some of them related to the interaction of the S protein with the angiotensin-converting enzyme 2 (ACE-2). Thus, there are some concerns that need to be addressed and challenges regarding logistic problems, such as strict storage at low temperatures for some vaccines. In this review, we discuss the limits of vaccines developed against COVID-19 and possible innovative approaches.

16.
Expert Rev Vaccines ; 21(7): 975-982, 2022 07.
Article in English | MEDLINE | ID: covidwho-1778823

ABSTRACT

BACKGROUND: Consolidated information on the effectiveness of COVID-19 booster vaccination in Europe are scarce. RESEARCH DESIGN AND METHODS: We assessed the effectiveness of a booster dose of an mRNA vaccine against any SARS-CoV-2 infection (symptomatic or asymptomatic) and severe COVID-19 (hospitalization or death) after over two months from administration among priority target groups (n = 18,524,568) during predominant circulation of the Delta variant in Italy (July-December 2021). RESULTS: Vaccine effectiveness (VE) against SARS-CoV-2 infection and, to a lesser extent, against severe COVID-19, among people ≥60 years and other high-risk groups (i.e. healthcare workers, residents in long-term-care facilities, and persons with comorbidities or immunocompromised), peaked in the time-interval 3-13 weeks (VE against infection = 67.2%, 95% confidence interval (CI): 62.5-71.3; VE against severe disease = 89.5%, 95% CI: 86.1-92.0) and then declined, waning 26 weeks after full primary vaccination (VE against infection = 12.2%, 95% CI: -4.7-26.4; VE against severe disease = 65.3%, 95% CI: 50.3-75.8). After 3-10 weeks from the administration of a booster dose, VE against infection and severe disease increased to 76.1% (95% CI: 70.4-80.7) and 93.0% (95% CI: 90.2-95.0), respectively. CONCLUSIONS: These results support the ongoing vaccination campaign in Italy, where the administration of a booster dose four months after completion of primary vaccination is recommended.


Subject(s)
COVID-19 , COVID-19/epidemiology , COVID-19/prevention & control , Humans , SARS-CoV-2 , Vaccines, Synthetic , mRNA Vaccines
17.
BMJ ; 376: e069052, 2022 02 10.
Article in English | MEDLINE | ID: covidwho-1759321

ABSTRACT

OBJECTIVES: To estimate the effectiveness of mRNA vaccines against SARS-CoV-2 infection and severe covid-19 at different time after vaccination. DESIGN: Retrospective cohort study. SETTING: Italy, 27 December 2020 to 7 November 2021. PARTICIPANTS: 33 250 344 people aged ≥16 years who received a first dose of BNT162b2 (Pfizer-BioNTech) or mRNA-1273 (Moderna) vaccine and did not have a previous diagnosis of SARS-CoV-2 infection. MAIN OUTCOME MEASURES: SARS-CoV-2 infection and severe covid-19 (admission to hospital or death). Data were divided by weekly time intervals after vaccination. Incidence rate ratios at different time intervals were estimated by multilevel negative binomial models with robust variance estimator. Sex, age group, brand of vaccine, priority risk category, and regional weekly incidence in the general population were included as covariates. Geographic region was included as a random effect. Adjusted vaccine effectiveness was calculated as (1-IRR)×100, where IRR=incidence rate ratio, with the time interval 0-14 days after the first dose of vaccine as the reference. RESULTS: During the epidemic phase when the delta variant was the predominant strain of the SARS-CoV-2 virus, vaccine effectiveness against SARS-CoV-2 infection significantly decreased (P<0.001) from 82% (95% confidence interval 80% to 84%) at 3-4 weeks after the second dose of vaccine to 33% (27% to 39%) at 27-30 weeks after the second dose. In the same time intervals, vaccine effectiveness against severe covid-19 also decreased (P<0.001), although to a lesser extent, from 96% (95% to 97%) to 80% (76% to 83%). High risk people (vaccine effectiveness -6%, -28% to 12%), those aged ≥80 years (11%, -15% to 31%), and those aged 60-79 years (2%, -11% to 14%) did not seem to be protected against infection at 27-30 weeks after the second dose of vaccine. CONCLUSIONS: The results support the vaccination campaigns targeting high risk people, those aged ≥60 years, and healthcare workers to receive a booster dose of vaccine six months after the primary vaccination cycle. The results also suggest that timing the booster dose earlier than six months after the primary vaccination cycle and extending the offer of the booster dose to the wider eligible population might be warranted.


Subject(s)
2019-nCoV Vaccine mRNA-1273/immunology , BNT162 Vaccine/immunology , COVID-19/epidemiology , Immunization, Secondary/statistics & numerical data , SARS-CoV-2/pathogenicity , 2019-nCoV Vaccine mRNA-1273/administration & dosage , Adolescent , Adult , Aged , Aged, 80 and over , BNT162 Vaccine/administration & dosage , COVID-19/diagnosis , COVID-19/immunology , COVID-19/prevention & control , Female , Follow-Up Studies , Humans , Immunogenicity, Vaccine , Incidence , Italy/epidemiology , Male , Middle Aged , SARS-CoV-2/isolation & purification , Severity of Illness Index , Time Factors , Treatment Outcome , Vaccination/statistics & numerical data , Young Adult
18.
Annali dell'Istituto Superiore di Sanita ; 58(1):1-5, 2022.
Article in English | ProQuest Central | ID: covidwho-1738008

ABSTRACT

Introduction. Multiple variants of SARS-CoV-2, since the end of 2020 have emerged in many geographical areas and are currently under surveillance worldwide highlighting the continuing need for genomic monitoring to detect variants previously not yet identified. Methods. In this study, we used whole-genome sequencing (WGS) and phylogenetic analysis to investigate A.27 lineage SARS-CoV-2 from Sardinia, Italy. Results. The Italian A.27 lineage genomes from Sardinia appeared related in a clade with genomes from France. Among the key mutations identified in the spike protein, the N501Y and the L452R deserve attention as considered likely vaccine escape mutations. Additional mutations were also here reported. Conclusion. A combination of features could explain our data such as SARS-CoV-2 genetic variability, viral dynamics, the human genetic diversity of Sardinian populations, the island context probably subjected to different selective pressures. Molecular and genomic investigation is essential to promptly identify variants with specific mutations with potential impact on public health and vaccine formulation.

19.
Viruses ; 14(3)2022 02 25.
Article in English | MEDLINE | ID: covidwho-1737036

ABSTRACT

We performed next-generation sequencing (NGS), phylogenetic analysis, gene flows, and N- and O-glycosylation prediction on SARS-CoV-2 genomes collected from lab-confirmed cases from different Italian regions. To this end, a total of 111 SARS-CoV-2 genomes collected in Italy between 29 January and 27 March 2020 were investigated. The majority of the genomes belonged to lineage B.1, with some descendant lineages. The gene flow analysis showed that the spread occurred mainly from the north to the center and to the south of Italy, as confirmed by epidemiological data. The mean evolutionary rate estimated here was 8.731 × 10-4 (95% highest posterior density, HPD intervals 5.809 × 10-4 to 1.19 × 10-3), in line with values reported by other authors. The dated phylogeny suggested that SARS-CoV-2 lineage B.1 probably entered Italy between the end of January and early February 2020. Continuous molecular surveillance is needed to trace virus circulation and evolution.


Subject(s)
COVID-19 , Genome, Viral , COVID-19/epidemiology , Genomics , Humans , Phylogeny , SARS-CoV-2/genetics
20.
Euro Surveill ; 27(5)2022 02.
Article in English | MEDLINE | ID: covidwho-1700766

ABSTRACT

BackgroundSeveral SARS-CoV-2 variants of concern (VOC) have emerged through 2020 and 2021. There is need for tools to estimate the relative transmissibility of emerging variants of SARS-CoV-2 with respect to circulating strains.AimWe aimed to assess the prevalence of co-circulating VOC in Italy and estimate their relative transmissibility.MethodsWe conducted two genomic surveillance surveys on 18 February and 18 March 2021 across the whole Italian territory covering 3,243 clinical samples and developed a mathematical model that describes the dynamics of co-circulating strains.ResultsThe Alpha variant was already dominant on 18 February in a majority of regions/autonomous provinces (national prevalence: 54%) and almost completely replaced historical lineages by 18 March (dominant across Italy, national prevalence: 86%). We found a substantial proportion of the Gamma variant on 18 February, almost exclusively in central Italy (prevalence: 19%), which remained similar on 18 March. Nationally, the mean relative transmissibility of Alpha ranged at 1.55-1.57 times the level of historical lineages (95% CrI: 1.45-1.66). The relative transmissibility of Gamma varied according to the assumed degree of cross-protection from infection with other lineages and ranged from 1.12 (95% CrI: 1.03-1.23) with complete immune evasion to 1.39 (95% CrI: 1.26-1.56) for complete cross-protection.ConclusionWe assessed the relative advantage of competing viral strains, using a mathematical model assuming different degrees of cross-protection. We found substantial co-circulation of Alpha and Gamma in Italy. Gamma was not able to outcompete Alpha, probably because of its lower transmissibility.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Italy/epidemiology , Models, Theoretical
SELECTION OF CITATIONS
SEARCH DETAIL